Management of Hip Fractures in the Elderly Patient

David A. Brown MD
COL U.S. Army Ret.
The Center for Orthopedics and Neurosurgery
Optimizing Management of Hip Fractures in the Elderly Patient
Optimizing Management of Hip Fractures in the Elderly Patient

• Objectives:
 • Differentiate Treatment and Management Strategies for Elderly vs. Young Patients with Hip Fractures.
 • Review / Understand Current Guidelines for Management
 • Discuss Proper Evaluation, Treatment and Management of Hip Fracture Patients
 • Improve Communication and Care – Multidisciplinary Care Team Members.
Optimizing Management of Hip Fractures in the Elderly Patient

• Pretest:
 • 1. What are the chances of sustaining a hip fracture if you live to be 90 years old?
 • 2. If you sustain a hip fracture after age 65 what is your one-year mortality?
 • 3. Why are femoral neck fractures of such concern in young patients?
 • 4. If you suspect a patient has a hip fracture but plain films are normal – what further study should you order?
 • 5. How quickly should a Hip-Fracture patient undergo surgery?
 • What is the average length-of-stay for a hip fracture patient?
Optimizing Management of Hip Fractures in the Elderly Patient

• Overview:
 • Epidemiology
 • Emergency Room Management
 • The Role of the Hospitalist / Internist
 • Perioperative Risk Assessment / Optimization
 • Anesthesia for Hip Fracture Patients
 • Orthopedic Care
 • Post Op Care on the Ward
 • Inpatient Rehabilitation
 • Discharge and Return to Function
 • Preventing Future Injuries
Epidemiology of Hip Fractures in the Elderly

- U.S.
 - 250,000 Hip Fractures Annually
 - Even Division - Femoral Neck & Intertroch Fx’s
 - 500,000 by 2050
 - 75% are Women
 - Average age 72 years old
 - By Age 90 – 50% of women will have a hip fracture
 - Lifetime risk 18%

[References]

Osteoporosis International
October 2011, Volume 22, Issue 10, pp 2575–2585
Geographic trends in incidence of hip fractures: a comprehensive literature review
Epidemiology of Hip Fractures in the Elderly

- Bend and Surrounding areas
 - Estimated 300 – 500 admissions
 - More than 500 Procedures
 - Average Length of Stay – 6 Days?
 - Mortality - ?
 - Morbidity - ?
Epidemiology of Hip Fractures

• U.S. Population:
 • Risk Factors
 • Female sex
 • Multiple medical problems
 • Tobacco and Alcohol Use
 • White Race
 • Increasing Age
 • Low Estrogen Levels in females
Epidemiology of Hip Fractures

• In the United States:
 • Risk Factors
 • Previous Fall History
 • Previous Fragility Fracture
Fragility Hip Fractures

- Mechanism of Injury
 - Low Energy trauma
 - Fall onto the Greater Trochanter
 - Forced External Rotation
 - Fracture then Fall
Hip Fractures in Young Patients

- Occur as a result of
 - high energy trauma
 - Stress Fractures in Military recruits and Athletes
- Different treatment considerations
- Different Urgency of surgical care
- Disruption of the blood supply to the femoral head
Emergency Room Management
Hip Fractures

Low Energy Fracture

- History
 - LOC or near-syncopy
 - PMH
 - Chest pain
 - Previous Hip Pain
 - Pre-Injury functional status
- 2ndary Survey

- Radiology
 - Plain Films
 - CT Scan
 - MRI
- Pain Control
 - Regional block
Emergency Room Management of Hip Fractures

• Confirm Diagnosis
• Notify Hospitalist & Orthopedic surgeon
• NPO, IVF
• Foley Catheter
• Physician Assisted Traction Internal Rotation film
• Consider Regional Block – pain control
• Position for Comfort – traction not indicated
Hip Fracture Management
The Role of the Internist

• Perioperative Risk Assessment
• Medical Optimization
• Geriatric Comanagement

• Interdisciplinary Care
 • 50% reduction in postoperative complications
 • Fewer ICU transfers
 • Shorter Length of Stay
 • Lower mortality
 • Fewer Nursing Home discharges
Perioperative Risk Assessment and Medical Optimization

- Evaluation of Comorbidities
 - Chronic Stable
 - Chronic – Unstable
 - Newly Diagnosed
 - Charlson comorbidity Index

- Preoperative Functional Capacity
- ASA Classification
- Preoperative Cardiac Risk Assessment
- Pulmonary Risk Assessment
- Preoperative Cardiac and Pulmonary Testing
- Geriatric Comanagement
Surgical Timing in Management of Hip Fractures

• Operative Treatment as soon as patient is medically optimized
• Avoid Delay for patients on Aspirin or Plavix
Anesthesia for Hip Fracture Patients

• Pain control – Peripheral Nerve Blocks
 • Continuous Infusion catheters
• Spinal and Epidural Anesthesia
 • Not definitively associated with fewer complications
 • Less POCD & Delerium

• General Anesthesia
 • Induction
 • Hypotension
 • Prolonged intubation in patients with pulmonary issues
Orthopedic Surgeon’s Approach to the Management of Hip Fractures
Classification of Hip Fractures

- Femoral Neck Fractures
- Introchanteric Fractures
Non Operative Treatment

- Femoral Neck Fx’s
 - Valgus Impacted Fractures
 - Patient Compliance
 - Nonambulatory Patients
 - High Risk of Nonunion
 - Displacement
 - Unsuccessful Result

- Intertrochanteric fxs
 - Prolonged TWB
 - Less Risk of Nonunion
 - Minimal Risk of AVN
 - Complications associated with limited mobility
Classification of Femoral Neck Fractures

- Femoral Neck Fractures
 - Nondisplaced
 - Displaced
 - Valgus impacted
Classification of Femoral Neck Fractures

- Femoral Neck Fractures
 - Nondisplaced
 - Displaced
 - Valgus impacted
Operative Treatment

• Femoral Neck Fractures
 • Girdlestone Procedure
 • Cannulated Screw Fixation \textit{in-situ}
 • Closed or Open Reduction with Screw Fixation
Operative Treatment

- Femoral Neck Fractures
 - Hemiarthroplasty
 - Cemented
 - Uncemented
 - Total Hip Arthroplasty
 - Cemented Stem
 - Uncemented Stem
Femoral Neck Fractures

- Stable Femoral Neck Fractures
 - Nondisplaced
 - Valgus impacted
Treatment of Femoral Neck Fractures

- Displaced Femoral Neck Fractures
 - Arthroplasty
 - Unipolar vs Bipolar
Treatment of Femoral Neck Fractures

• Displaced Femoral Neck Fractures
 • Total Hip Arthroplasty vs. Hemiarthroplasty
 • Cemented Femoral Stems
 • Surgical approach
Treatment of Femoral Neck Fractures

- Displaced Femoral Neck Fractures
 - Total Hip Arthroplasty vs. Hemiarthroplasty
 - Recreate normal Hip mechanics and function
Treatment of Femoral Neck Fractures

- Displaced Femoral Neck Fractures
 - Total Hip Arthroplasty vs. Hemiartroplasty
 - Recreate normal Hip mechanics and function
Treatment of Femoral Neck Fractures

• Displaced Femoral Neck Fractures
 • Total Hip Arthroplasty vs. Hemiarthroplasty
 • Recreate normal Hip mechanics and function
Treatment of Femoral Neck Fractures

- Displaced Femoral Neck Fractures
 - Total Hip Arthroplasty vs. Hemiarthroplasty
 - Recreate normal Hip mechanics and function
Classification of Intertroch Fractures

- Intertrochanteric Fractures
 - Nondisplaced
 - Stable
 - Unstable
Treatment of Intertroch Fractures

- Stable Fractures
 - Intact Lateral Wall
 - Minimal Comminution
 - Intact Posteiomedial buttress
Treatment of Intertroch Fractures

- Stable Fractures
 - Sliding Hip Screw
 - Cephalomedullary IMN
Treatment of Intertroch Fractures

• Stable Fractures
 • Sliding Hip Screw
 • Cephalomedullary IMN
Treatment of Intertroch Fractures

- Unstable Fractures
 - Reverse Obliquity
 - Subtroch Extension
 - Intertroch Comminution
Operative Treatment

• Intertrochanteric Femur Fractures
 • Cephalomedullary IMN
 • Short Implant
 • Quicker
 • Less blood Loss
 • Risk of Fx
 • Long Implant
 • Increased time
 • EBL
 • Protects the entire femur
Postoperative Considerations

- Mental Status Changes
 - POCD – cognitive dysfunction
 - POD - delirium
- Pulmonary Complications
- Cardiac Complications
- Gastrointestinal Complications
- Nutrition Concerns
- DVT and PE
Post Operative Care on the Ward

- Transfusion threshold not higher than 8mg/dl
- Multimodal Pain Management
- VTE prophylaxis
- Nutritional Supplementation
- Occupational Therapy and Physical Therapy
- Calcium and Vitamin D supplements
Inpatient Rehabilitation

• Establish Weight Bearing Status
• Hip Precautions
• Progressive mobilization
• Assistive Device training
• ADL’s
Discharge and Return to Function

- Strength and Balance Training
- Fall Prevention
- Bone Health Augmentation
- Nutrition Optimization
- Calcium and Vitamin D
- Intensive Physical therapy
Discharge and Return to Function

- Strength and Balance Training
- Fall Prevention
- Bone Health Augmentation
- Nutrition Optimization
- Calcium and Vitamin D
- Intensive Physical therapy
Preventing Future Injuries

- Strength and Balance Training
- Fall Prevention
- Bone Health Augmentation
- Nutrition Optimization
- Calcium and Vitamin D
- Intensive Physical therapy
Optimizing Management of Hip Fractures in the Elderly Patient

• Post-test:
 • 1. What are the chances of sustaining a hip fracture if you live to be 90 years old? Women 50% Men 17%
 • 2. If you sustain a hip fracture after age 65 what is your one-year mortality? 12% - 37%
 • 3. Why are femoral neck fractures of such concern in young patients? Disrupts femoral head blood supply
 • 4. If you suspect a patient has a hip fracture but plain films are normal – what further study should you order? MRI
 • 5. How quickly should a Hip-Fracture patient undergo surgery? After medial optimization: Within 48 hours
Optimizing Management of Hip Fractures in the Elderly Patient

• Overview:
 • Epidemiology
 • Emergency Room Management
 • The Role of the Hospitalist / Internist
 • Perioperative Risk Assessment / Optimization
 • Anesthesia for Hip Fracture Patients
 • Orthopedic Care
 • Post Op Care on the Ward
 • Inpatient Rehabilitation
 • Discharge and Return to Function
 • Preventing Future Injuries
Summary

• Fragility Hip Fractures:
 • A marker of an overall decrease in health
 • Best outcomes with a multidisciplinary team
 • Benefit from Continuation of Outpatient PT
 • Opportunity to address bone health & Prevention of fragility fractures of the hip, spine, wrist & shoulder
Optimizing Management of Hip Fractures in the Elderly Patient

David A. Brown MD
COL U.S. Army Ret.
The Center for Orthopedics and Neurosurgery
Optimizing Management of Hip Fractures in the Elderly Patient

• Key References:
 • The Medical Orthopaedic Trauma Service: An Innovative Multidisciplinary Team Model That Decreases In-Hospital Complications in Patients With Hip Fractures. JOT 2012 Jun, 26(6) 379
 • Postoperative Length of Stay and 30-day readmission after geriatric hip fracture. J Orthopedic trauma 2015 Mar; 29(3): e115-120
 • Femoral Neck Fractures: Current Management; JOT 2015 Mar 29(3) 121.
 • From Evidence to Application: AAOOS Clinical Practice Guideline on Management of Hip Fractures in the Elderly; JOT 2015 Mar 29(3) 119.